Using generalized cross-validation to select parameters in inversions for regional carbon fluxes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using generalized cross-validation to select parameters in inversions for regional carbon fluxes

[1] Estimating CO2 fluxes from the pattern of atmospheric CO2 concentrations with atmospheric transport models is an ill-posed inverse problem, whose solution is stabilized using prior information. Weights assigned to prior information and to CO2 concentrations at different locations are quantified by parameters that are not well known, and differences in the choice of these parameters contribu...

متن کامل

Biases in regional carbon budgets from covariation of surface fluxes and weather in transport model inversions

Recent advances in atmospheric transport model inversions could significantly reduce uncertainties in land carbon uptake through the assimilation of CO2 concentration measurements at weekly and shorter timescales. The potential of these measurements for reducing biases in estimated land carbon sinks depends on the strength of covariation between surface fluxes and atmospheric transport at these...

متن کامل

Wavelet thresholding using generalized cross validation

De-noising algorithms based on wavelet thresholding replace small wavelet coeecients by zero and keep or shrink the coeecients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use Generalized Cross Validation. This procedure is fast and does not require an estimation fo...

متن کامل

Explicit Solution to the Minimization Problem of Generalized Cross-Validation Criterion for Selecting Ridge Parameters in Generalized Ridge Regression

This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Research Letters

سال: 2004

ISSN: 0094-8276

DOI: 10.1029/2004gl020323